

Renewed interest in cryogenic etching processes: what are the advantages of cooling the substrate?

Rémi DUSSART

GREMI, Université d'Orléans-CNRS, 14 Rue d'Issoudun, BP 6744 45067 Orléans, France

*G*roupe de *R*echerches sur l'*E*nergétique des *M*ilieux *I*onisés 14 rue d'Issoudun 45067 Orléans Cedex 2 France

✓ Introduction, history and principle of cryoetching

- ✓ Deep Cryo-Etching of Silicon
- ✓ Passivation layer formation by SiF₄/O₂ plasma
- ✓ Passivation steps using CF_4 plasma instead of C_4F_8
- ✓ Cryo Atomic Layer Etching
- ✓ What makes cryogenic etching popular again in the industry ?
- ✓ What are the advantages of cooling the substrate ?

2

Introduction, principle and history of cryo-etching of Silicon

GREM

3

Introduction to cryochemistry

- It is counterintuitive that chemical reactions can be accelerated at low temperature, by freezing. ^[1]
- However, this phenomenon has been highlighted by the "cryo-chemistry" community since the 50^{ies}.^[2]

```
Example <sup>[3]</sup>: in the following reaction,
```

 $aA + bB \rightarrow products$

The reaction rate is given by :

Rate = $k'[A]^a[B]^b$

k' is the rate coefficient and follows an Arrhenius law

 $k' = A' \exp(-E_a/RT)$

A' = Arrhenius pre-exponential factor E_a : activation energy

By decreasing T, k' should decrease as well. A' (frequency factor) should also decrease as T decreases

^[1] 2021: An, L.-Y. et al. Advances in Cryochemistry: Mechanisms, Reactions and Applications. Molecules 26 750
 ^[2] 1962: H. A. McGee and W. J. Martin Cryochemistry, Cryogenics, vol2 (5) 257
 ^[3] 2023: Jiaxin Lv et al. Freeze-accelerated reactions on environmental relevant processes Cell reports Physical Science 4 101456

Example in a frozen solution or impure solid, there is a gradual transition from solid to liquid

Freezing begins when T is below the freezing point

- In the frozen state, the substance is in equilibrium between its solid and liquid phases.
- Unfrozen regions behave as « micropockets » and provide special microenvironments for chemical reactions.
- If all solutes are rejected from ice crystals to the unfrozen solution, the concentrations of solutes A and B in the micropockets, [A]_{mp} and [B]_{mp} can be expressed as:

 $[A]_{mp} = [A] C_{mp} / C_{T} \qquad [B]_{mp} = [B] C_{mp} / C_{T} \qquad Rate = k' [A]_{mp}^{a} [B]_{mp}^{b}$

⇒ Concentration effect which accelerates the reaction

^[1] 1996: Norimichi Takenaka et al. Acceleration Mechanism of Chemical Reaction by Freezing J. Phys. Chem., Vol. 100, No. 32 ^[2] 2023: Jiaxin Lv et al. Freeze-accelerated reactions on environmental relevant processes Cell reports Physical Science 4 101456

5

Brief history of the cryogenic etching process

Tachi's team proposed to cool the substrate down to a temperature between **-100** and **-130°C** while running a **microwave SF₆ plasma** to etch silicon anisotropically.

1988 : S. Tachi et Al. Appl. Phys. Lett., 52(8), 616(1988)

The idea was to **freeze chemical reactions** on vertical sidewalls of the sample and favor ion-assisted reactions at the feature bottom.

FIG. 3. Silicon profile etched at \sim with the use of SF₆ gas plasma.

performed with high selectivities of 30 for organic resist films. High etch rates of 500 and 1000 nm/min by reactive ion etching and microwave plasma etching, respectively, were achieved with a SF_6 gas plasma at low wafer temperatures from (-130 to -100 °C). It is concluded that

Brief history of the cryogenic process (cont'd)

- 1995 : J. W. Bartha et Al. Microelectron. J., 43, 453(1995)

plasma source. In contrast to the current understanding of low temperature etching, we did not observe a "freezing" of the lateral etching reaction, but obtained isotropic etch profiles, even at temperatures below -120° C. Anisotropic etch profiles are obtained by an addition of O₂. We therefore propose a sidewall passivation

For the first time, a mechanism based on sidewall passivation was suggested in cryogenic etching instead of a mechanism based on a low reaction probability of the radicals on very cold silicon surfaces.

Principle of cryoetching of Silicon

 SF_6/O_2 plasma

✓ Chemical etching (selective) SiF₄ : main etching product

✓ Passivation layer (SiO_xF_y)

Only forms at very low temperature

 ✓ Fragile passivation layer, easily removed by ion bombardment

Simultaneous mechanisms

Silicon (100) cooled down at -100°C and negatively biased

8

Typical reactor used for cryoetching

9

Deep Cryo-Etching of Silicon

Passivation layer characterization in SF₆/O₂ plasma

TREF

Role of oxygen, temperature and ion bombardment

⇒ What is the composition of the passivation layer ? What is the role of the etched by-products ?

⇒ What are the main mechanisms involved in the formation of the passivation layer ? Why is it necessary to cool the substrate?

⇒ How to enhance the robustness of the passivation layer in the cryogenic process ?

Ex-Situ XPS analysis

Objective of this experiment : analyze the passivation layer after etching, but without leaving the sample being oxidized by the ambient air.

Method :

1. After etching, the sample is removed from the reactor in the glove box 1 full of pure $N_2\,\text{gas}$

2. Transportation of the wafer (under pure N_2) toward the glove box 2 where cleavage is performed. (Residual O_2 rate controlled <0.1 %).

3. After cleavage, transportation of the trench to be analyzed in another lab in a 3rd glove box for XPS.

Ex-Situ XPS analysis (cont'd)

	Lines	Peak Center [eV]	Ratio (±0.01)		1
(Nearly ne evidetion (CiO) on the requireted			Α	В	С
v Nearly no oxidation (SIO ₂) on the passivated	F/Si-Si	F 1s-688	0.02	0.02	0.01
surfaces.	O / Si-Si	O 1s–533.5	0.13	0.15	0.14
· Low contamination	C / Si-Si	C 1s- 285.3	0.11	0.15	0.11
	Si-O / Si-Si	Si 2p-103.7	0.03	0.03	0.03

⇒ The passivation layer **is removed when** the wafer is warmed back up to ambient temperature

⁽¹⁾R. Dussart et al J. Micromech. Microeng., 14, 190-196 (2004)

Desorbed species - Mass spectrometry analysis

Passivation layer characterization by mass spectrometry

analyze the desorbed species coming from trench sidewalls when the wafer is warmed back to ambient temperature.

X. Mellhaoui et al., J. Appl. Phys., 98, 104901 (2005)

In-situ X-Ray Photoelectron Spectroscopy

OPTIMIST Platform (IMN, Nantes)

Christophe Cardinaud, Aurélie Girard

 SF_6/O_2 in **RF** Antenna TCP type Hemispherical overpassivating ICP power (1) analyzer Matching regime network Al_2O_3 4 gas feed Electrostatic X-ray source lenses T controller Electrons To XPS chamber Load lock Photons Sample rod -180°C < T < +1100°C Differential **Surface analysis** pumping

In-situ X-Ray Photoelectron Spectroscopy

> Decrease of SiO_xF_{4-x} contribution with temperature
 > Appearance and increase of Si matrix contribution

[O]_{at} remains almost constant from -75°C
[F]_{at} decreases from -75°C

Silicon matrix after SF₆/O₂ overpassivating plasma

JREMI /

+30°C

Summary on the SiO_xF_y Passivation layer in SF_6/O_2 plasma

/ Thin SiO_xF_y formation by SF_6/O_2 plasma at low temperature

SiO_xF_y 0 c-Si

In SF₆/O₂ plasma, fluorine radicals will form SiF_x sites at the silicon surface and oxygen will react with SiF_x sites to form a thin SiO_xF_y layer.

⇒ quite fragile passivation layer.

Passivation layer formation by SiF₄/O₂ plasma

GREMI

Passivation layer construction with SiF₄

Two cavity test experiments to study the passivation layer formation

- <u>**Principle :</u>** we start with an isotropic etching (**Ini**tial profile)</u>
 - we try to form the passivation layer with SiF_4 and O_2

STiGer process

Alternation of isotropic SF₆ etching steps and SiF₄/O₂ passivation steps 4 alternances 1min SF₆ etching - SiF₄/O₂ deposition + a final 1 min etch

-83°C

Same experiment at **0°C**

Anisotropic microstructures can be obtained by alternating SF_6 etching and SiF_4/O_2 passivation steps, but it only works at cryogenic temperature

GREMI 🖊

In-situ X-Ray Photoelectron Spectroscopy

SiF₄ **/ O**₂ plasma experimental conditions: **a-Si sample** ; 30 s ; SiF₄ /O₂ : 25 % ; 3.0 Pa ; 200 W ICP power ; no bias.

SiO_xF_y layer growth at 3 different temperatures : -40, -65 and -100°C

/ At -40°C, 17.1% [F] ; 23.6% [O]

After heating: no significant change

// At -65°C, 20.0% [F] ; 22.8% [O]

After heating: a little decrease of [F]

// At -100°C, 52.3% [F] ; 18.0% [O] ; 15% [N] (stoechiometry of ~SiOF₃)

After heating: a large part of Fluorine based species has desorbed

OPTIMIST Platform

G. Antoun et al 2022 ECS J. Solid State Sci. Technol. 11 013013

2014 : Molecular dynamics by Stefan Tinck from PLASMANT laboratory (Antwerpen)

S. Tinck et al. J. Phys. Chem. C 2014, 118, 30315-30324

Fluorine – silicon surface reactions at cryogenic temperature

Calculated **probabilities for immediate sticking** upon impact of various impinging species on different surfaces ⁽¹⁾

Impinging species	on Si		on SiF		on SiF ₂		on SiF ₃	
	300 K	173 K	300 K	173 K	300 K	173 K	300 K	173 K
F	0,98	0,98	0,92	0,93	0,59	0,61	0,23	0,25
Si	1	1	1	1	0,41	0,40	0,20	0,19
Si _F	0,88	0,89	0,49	0,50	0	0	0	0
SiF ₂	0,51	0,50	0,18	0,19	0	0	0	0
SiF ₃	0,37	0,37	0,06	0,06	0	0	0	0
SiF ₄	0	0	0	0	0	0	0	0
F_2	1	1	1	1	0,77	0,77	0,3	0,31

Sticking : creation of a chemical bond (within 12.5 ps in this work).

Probabilities for Immediate Sticking do not depend on temperature from 173 to 300 K ! E_a increases by lowering T, due to smaller oscillation amplitudes between adsorbent and surface.

⇒ Long thermal desorption time at low temperature as compared to room temperature ⇒ longer residence time of the species at the surface

∋REMi∥

Conclusion on SiF_4/O_2 plasma at low T

// It is possible to reinforce the passivation layer by using SiF_4/O_2 plasma steps

✓ SiF_x radicals coming from SiF₄ dissociation deposit on the sidewalls with a much longer residence time. They react with oxygen atoms to create a thicker SiO_xF_y layer.
⇒ more robust passivation layer.

⇒ STiGer process

Alternation of SF_6 plasma – SiF_4/O_2 plasma

25

Passivation steps using CF₄ plasma instead of C₄F₈

ARCH

- C₄F₈ is the main gas used for passivation steps at room temperature in the so-called Bosch process to cover the sidewalls with a CF_x protective layer
- Low F/C ratio gases are highly polymerizing
- Deposition regime unless a high bias voltage is applied
- But, CF_x deposits everywhere even on reactor walls, leading to process drifts.
- Cleaning steps are needed

Adapted from J. W. Coburn and H. F. Winters, Plasma etching—A discussion of mechanisms, J Vac Sci Technol 16, 391 (1979)

- / The boundary line can be shifted to the right by decreasing the substrate temperature
- Is it possible to use CF₄ instead of C₄F₈ at low temperature ?

CF₄ plasma at cryogenic temperature

J. Nos et al. Appl. Phys. Lett. 126, 031602 (2025)

Etching step: 3 s 300 sccm SF₆, 3 Pa, 1500 Ws, -135 Vb **x200** Passivation step: 2 s 20 sccm CF₄, 1 Pa, 1500 Ws, -65 Vb

=> Strong CF_x deposition at -100°C

=> Enhanced passivation at -100°C

- CF concentration drops at low wafer temperature, which shows that CF sticks more efficiently at low temperature. This is not the case for CF₂.
- CF₄ is a good candidate to passivate the trench sidewalls without depositing on the reactor walls.

28

Cryo-Atomic Layer Etching

GREMI

Principle of Atomic Layer Etching

Atomic Layer Etching for SiO₂

Principle of Cryo-Atomic Layer Etching for SiO₂ Precursor w/o plasma **Adsorbed** layer SiO₂ substrate Purge Cooled substrate holder Ar plasma Purge

Self-Limiting Etching

Inductively Coupled Plasma (ICP) reactor

Parameter range:

- Fast ALD valves for C₄F₈ gas injection
- Pressure : 1 10 Pa
- Power : 500 3000 W
- Bias : 0 100 V
- C₄F₈ : 0 14 sccm
- Ar : 0 280 sccm
- Temperature : -150 30 °C

Diagnostic:

- In-situ ellipsometry
- Mass spectrometry

Proof of principle

No etching at -110 °C (and higher temperatures)

G.Antoun et al, Appl. Phys. Lett. 115, 153109 (2019)

Cryo-ALE of SiO₂ based on C₄F₈ physisorption

At constant pressure, by decreasing temperature:

Several desorption rates are observed

- Desorption rate ↘
- Residence time on the substrate surface *▶*

G. Antoun et al., Sci. Rep. 41598 (2020) 79560

Desorption rate

$$t_d = t_d^0 exp^{E_d/k_BT}$$

 t_d : residence time (s)

 t_d^0 : attempt time of the particle for desorption (s)

 E_d : desorption energy (eV)

Cryo-ALE of SiO₂ based on C₄F₈ physisorption at higher temperature

150 cycles at -90°C

• No drift observed due to reactor wall contamination

≈ 18 nm etched in 150 cycles

D I Sung et al Applied Surface Science 670 (2024) 160574

- Cryo Atomic Layer Etching of SiO₂ was shown by physisorbing C₄F₈ at the surface at -120°C followed by Ar plasma.
- A threshold temperature has to be reached to enable cryo-ALE.
- Residence time of physisorbed species can be determined by mass spectrometry.
- **Ar plasma** has to be ignited before the end of the residence time.
- Reactor wall contamination is significantly reduced. The etch per cycle remains quite regular, even after many cycles.
- Self-Limiting Etching is achieved.

What makes cryogenic etching popular again in the industry ?

GREMI

SiO₂ and Si₃N₄ deep etching

Need to etch very high aspect ratio holes on Si_3N_4 and SiO_2 for 3D NAND technology.

From H.I. Lee et al. ACS Sustainable Chem. Eng. 9, 4948, 2021

- Usually, CF-based plasmas (C₄F₈, CHF₃...) are used to etch SiO₂ and Si₃N₄ at room temperature.
- However, some deposition occurs on the carbon mask which leads to striation on the dielectric film
- // This aperture reduction increases the ARDE effect.

Mitsuhiro Omura et al 2019 Jpn. J. Appl. Phys. 58 SEEB02

Why using cryoetching ?

(Å∕min)

etch rate

SiO2

/ Increase of etch rate of SiO_2 at low T in CHF_3 plasma.

Conditions : CHF₃ gas Magnetron RIE system P = 40 mTorr RF power density : 1.4 W/cm²

T. Ohiwa, et al. Jpn. J. Appl. Phys.31. 405-410(1992)

- CF₄/H₂ plasma cryoetching : etch rate increases by adding H₂
- I They showed by in-situ FTIR that HF was forming at the surface at low temperature

S-N. Hsiao et al. Small Methods 2400090 (2024)

Pure HF and H₂O plasma mixture can be used to etch SiO₂ and Si₃N₄ at low temperature (below -40°C) with high energy ions.

Y. Kihara et al. 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Kyoto, Japan, 1-2 (2023).

G. S. Oehrlein et al., "Future of plasma etching for microelectronics: Challenges and opportunities" JVST. B 42, 041501 (2024)

SiO₂ cryoetching in SF₆/H₂ plasma

Pressure (Pa)

SiO₂ cryoetching versus H₂ % (0,6 Pa, 150 W bias)

- In terms of physical and chemical mechanisms, cooling the substrate can :
 - Increase the residence time of physisorbed species
 - // Promote chemical reactions at the surface
 - Modify the stoichiometry of the deposited layer
 - Create a mix between physisorbed and chemisorbed species at the surface
 - // Limit surface diffusion
- In terms of process, cooling the substrate can:
 - Avoid contamination of the reactor walls
 - Increase the etch rate
 - Increase the selectivity
 - Protect porous material during etching

PlaCEP workshop (Plasma Cryogenic Etching Processes)

1st edition in 2022 : Orléans (France)
2nd edition in 2024 : Leuven (Belgium)
3rd edition in 2025 : New Taipei (Taiwan)

The *3rd PlaCEP Workshop* will take place at Ming Chi University of Technology in New Taipei City, Taiwan in June 25-28, 2025

organized within the International Plasma Technology Joint Conference 2025 (IPTJC-2025)

International Plasma Technology Joint Conference

Cryogenic etching processes of silicon, dielectrics, cryo-ALE, modeling and simulation

Acknowledgment

47

Thank you !

GREMI